

Recent advances in Inverse Gas Chromatography - IGC - measurements of HSP

RALF DUEMPELMANN, ERIC BRENDLE and STEVEN ABBOTT

Content

- Introduction
- Inverse Chromatography
 - Some principles
- How to determine HSP using IGC?
 - Principle
 - Key Assumptions
- What happens if key assumptions are not respected?
- Example of application
 - Sesame oil
 - Pharmaceutical excipients
 - ► Ionic Liquids
- Conclusions and Outlook

Who are we?

Eric Brendle (France)

- ▶ 15 years IGC service for industry
- founder of Adscientis

Steven Abbott (UK)

- enthusiastic expert and advisor
- creator of apps and videos

Ralf Duempelmann (CH)

- 20 years R&D work in industry
- founder of Inolytix for better insights

Collaborations (D)

together

new, fully automated and most-versatile IGC instrument

0 Commer

A tri-national cooperation takes surface characterization of powders and

Dr. Ralf Dümpelmann (Inolytix, CH), Dr. Eric Brendle (Adscientis, F), Dr. Jürgen Adolphs (Porotec, G)

The Inverse Chromatography

Goal: Physicochemical measurements of surface properties or HSP

Various "Inverse Chromatography" techniques

Content

- Introduction
- Inverse Chromatography
 - Some principles
- How determine HSP using IGC?
 - Principle
 - Key Assumptions
- What happens if key assumptions are not respected?
- Example of application
 - Sesame oil
 - Pharmaceutical excipients
 - Ionic Liquids
- Conclusions and Outlook

Preparation of IGC on liquids for HSP

Sample (HSP) is deposited on a solid support

Support is often Chromosorb P AW-DMDCS

- Acid washed and treated with dimethyldichlorosilane
- Assumed inert surface (!!)

Target surface coverage: 15-20% in weight

Several impregnation methods exists

1/8" or 1/4" stainless steel tubing

Column installed in IGC instrument (can be GC ...)

Sample conditioning (dry He stream, removes the volatile substance

Sample characteristics:

- •<u>liquids</u>: oils, mixtures, any not volatile samples
- **■Polymers**: above T_g
- Support amounts:200 < Support < 1000 mg
- ■Sample amounts: 30 < Sample < 200 mg
- Measurement T° range: 20 < T°_{analysis} < 200°C (or more)

Ready for the IGC measurements

Operation and calculation of liquids for HSP

- Injection of probe molecules (test solvents)
 - Infinite dilution condition
 - Methane for t₀ determination
- Several molecular probes are injected (between 20 and 22 solvents)
 - Covering a broad HSP parameter domain (S. Abbott)
- Measurement of t_N , the net retention time of each probe t_N is the time spent into the liquid t_N
- Computation of the corresponding V_g :
 - Specific retention volume (normalized to 1 g sample)
 - Inert gas (He) volume required to elute the probe
- Use of HSPiP software to compute the HSP values
 - Direct import of the V_g values

Key assumptions

- Injections at infinite dilution (IGC-ID)
 - No overloading, i.e. no solvent-solvent interactions to the retention time
- No significant sample (=liquid) amount modification
 - Evaporation / bad FID signal
 - Degradation / non reproducible
- Uniform and perfect support surface coverage by the liquid sample
 - No contribution of the support surface to the retention time
 - No interaction between the solvents (= gas probe) and the support

Less obvious to check...

Easy to check

Content

- Introduction
- Inverse Chromatography
 - Some principles
- How determine HSP using IGC?
 - Principle
 - Key Assumptions
- What happens if key assumptions are not respected?
- Example of application
 - Sesame oil
 - Pharmaceutical excipients
 - Ionic Liquids
- Conclusions and Outlook

Characteristics of chromatographic supports

- Determined at 25°C using IGC-ID
- Chromosorb P AW DMCS
 - Silica (diatomaceous earth) treated with dimethylchlorosilane treated and acid washed
 - Low disperse surface energy (24.1 mJ/m²)
 - High polar adsorption sites remain
 - Sometimes difficult to wet
- Carbopack C80
 - Graphitized carbon
 - High disperse surface energy (133.4 mJ/m²)
 - Poorly polar
 - Highly nanorough (size exclusion)

	Chromosorb	Carbopack
Surface energy (γs ^d)	24,1 ± 1,0 mJ/m ²	133,4 ± 3,9 mJ/m ²
Specific interactions	ΔG _a SP [kJ/mol]	ΔG _a SP [kJ/mol]
1,2-dichloroethane	15,3 ± 0,1	4,9 ± 0,2
Acetonitrile	17,3 ± 0,2	5,1 ± 0,5
Chloroform	15,4 ± 0,1	6,0 ± 0,2
1-nitropropane	14,7 ± 0,1	-2,3 ± 0,4
Ethanol	16,7 ± 0,2	3,8 ± 0,5
Propanol	16,4 ± 0,1	1,5 ± 0,3
Dioxane 1,4	11,5 ± 0,2	-4,9 ± 0,5
Et-Acetate	8,5 ± 0,1	-2,0 ± 0,4
butanone	10,7 ± 0,1	0,6 ± 0,3
2-pentanone	10,0 ± 0,2	-0,2 ± 0,4
Toluene	10,2 ± 0,1	6,2 ± 0,4

Influence of the support on the measured V_g

- ■Comparison of the V_q measured for **sesame oil** deposited on carbopack and chromosorb
- •Measurements at 25°C, all things equal otherwise
- ■If no influence of the support: V_q(chromosorb)=V_q(carbopack)
- True for:
 - Apolar solvents and Toluene
 - CHCl₃ and 1,2-dichloroethane (because Chromosorb is DMCS treated?)
- ■False for all the other polar probes

Surface polarity of Chromosorb strongly influences the obtained V_g values

Influence on the determined HSP values

HSP: δ_{D} =13.6 ; δ_{P} =3.0 ; δ_{H} =6.1

HSP: δ_D =17.8 ; δ_P =0.2 ; δ_H =2.9

- Major differences
- Good coefficient of determination (R²) with Carbopack, very poor with Chromosorb

Over 70 HSPs of excipients measured

- Mostly good fittings with R² > 0.8
- Developed in collaboration with S. Abbott
 - Improvement of the molecular probe list
 - HSPiP computations
- Impregnation on Carbopack (range 15-18% in weight)
- Measurements at 25°C
- Injection of 20 selected molecular probes (test solvents)
 - heptane, octane, nonane, decane, cyclohexane and methylcyclohexane
 - tetrachloromethane, chloroform,1,2-dichloroethane
 - acetonitrile, nitropropane, toluene
 - ether, THF, dioxane
 - ethanol, propanol
 - ethyl acetate, 2-butanone, 2-pentanone
- Computation of HSP parameters using HSPiP Software

Example: HSP on pharmaceutical excipients X

HSP: δ_D =17.3 ; δ_P =2.3 ; δ_H =7.7

HSP: δ_D =16.3 ; δ_P =1.6 ; δ_H =8.3

Observation: chloroform is sometimes out of range...

Advanced: HSP determination on ionic liquids

N,N-Dimethylethanolammonium bis(trifluoromethane)sulfonylimide [DMEA][NTf2]

N,N-Dimethylethanolammonium octanoate

[DMEA][Oct]

N-Butyldiethanolammonium trifluoromethanesulfonate [Bu(CH₂(CH₂OH)₂NH][F₃CSO₃]

1,2-dimethylimidazoliumdimethylphosphate [EmIm][Me₂PO₄]

Tetramethylguanidinium hexanoate [TMG][Hex]

N,N-dimethylethanolammonium ethane sulfonate

[DMEA][EtSO₄]

1-Ethyl-3-methylimidazolium acetate [EM(m)Oac]

Choline bis(trifluoromethanesulfonyl)imide [Me₃NCH₂CH₂OH)(N(SO₂CF₃)₂]

HSP determination on ionic liquids

- Impregnation on Carbopack (range 15-18% in weight)
- Measurements at 25°C (He carrier gas)
- •Injection of 20 selected molecular probes (test solvents):
 - heptane, octane, nonane, decane, cyclohexane and methylcyclohexane
 - tetrachloromethane, chloroform,1,2-dichloroethane
 - acetonitrile, nitropropane
 - ether, THF, dioxane
 - ethanol, propanol
 - ethyl acetate
 - 2-butanone, 2-pentanone
 - toluene
- Computation of HSP parameters using HSPiP Software

HSP determination on ionic liquids - good!

N-Butyldiethanolammonium trifluoromethanesulfonate [Bu(CH₂(CH₂OH)₂NH][F₃CSO₃]

Sometimes relative good fittings are obtained

N,N-Dimethylethanolammonium bis(trifluoromethane)sulfonylimide [DMEA][NTf2]

HSP determination on ionic liquids - bad?

1,2-dimethylimidazoliumdimethylphosphate [EmIm][Me₂PO₄]

$$N^+$$
 O O O

Sometimes fittings are bad

N,N-Dimethylethanolammonium octanoate [DMEA][Oct]

Results: HSP on ionic liquids

N,N-Dimethylethanolammonium bis(trifluoromethane)sulfonylimide

Tetramethylguanidinium hexanoate [TMG][Hex]

[DMEA][NTf2]

$$\delta_{D}$$
=14.2

$$\delta_P$$
=11.5

$$S_{H}=11.5$$
 $r^{2}=0.841$

N,N-Dimethylethanolammonium octanoate

$$\delta_{\rm D} = 16.0$$

$$\delta_P$$
=1.3

$$\delta_H$$
=7.4

$$r^2=0.632$$

N-Butyldiethanolammonium trifluoromethanesulfonate [Bu(CH₂(CH₂OH)₂NH][F₃CSO₃]

$$\delta_{\rm D} = 16.9$$

$$\delta_P$$
=9.7

$$\delta_{H} = 9.8$$

$$r^2=0.791$$

1,2-dimethylimidazoliumdimethylphosphate [Emlm][Me₂PO₄]

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$\delta_{\rm D}$$
=15.7

$$\delta_P$$
=0.4

$$\delta_{H}$$
=14.5

$$r^2=0.545$$

$$\delta_{\rm D}$$
=17.1

$$\delta_P$$
=0.9

$$\delta_{H}$$
=11.5

 $r^2=0.801$

N,N-dimethylethanolammonium ethane sulfonate [DMEA][EtSO₄]

$$\delta_{\rm D} = 19.4$$

$$\delta_P$$
=4.9

$$\delta_{H}$$
=10.8

1-Ethyl-3-methylimidazolium acetate [EM(m)Oac]

$$\delta_{\rm D}$$
=18.2

$$\delta_P$$
=3.8

$$\delta_{H}$$
=16.8 r²=0.791

Choline bis(trifluoromethanesulfonyl)imide [Me₃NCH₂CH₂OH)(N(SO₂CF₃)₂]

$$\delta_{\rm D} = 16.4$$

$$\delta_{P} = 12.7$$

$$\delta_{H}$$
=8.7

$$r^2=0.860$$

Content

- Introduction
- Inverse Chromatography
 - Some principles
- How determine HSP using IGC?
 - Principle
 - Key Assumptions
- What happens if key assumptions are not respected?
- Example of application
 - Sesame oil
 - Pharmaceutical excipients
 - Ionic Liquids
- Conclusions and Outlook

Conclusions

- IGC provides a quick and suitable method for the determination of HSP
 - Low sample amounts required
 - Low solvent amounts needed
 - Possibility to test sample with more than 20 solvents a day
- Fiber o Powder (Use as Stationary Place)

 Support

 Support

- Key assumptions must be fulfilled
 - Good sample preparation (optimal and homogeneous surface coverage)
 - No influence of the injected solvent amounts (ID conditions must be respected)
 - No influence of the support
- Chromosorb P AW DMCS is not ideal
- Carbopack provides far better results
- Strong experience with excipients and other compounds
 - but still questions for... Ionic Liquids

sample

Outlook

■ IGC and HSP – Still further understanding and improvement

Neuronic: a new solution for automated IGC measurements

- Simultaneous measurements on two samples (2 analytical channels)
- Up to 45 test solvents available
- Coupling with HSPiP
- Outstanding performance
 - HSP for two samples (liquids) with 20 test solvents within one working day (repeatability tests included)

0 Comments

A tri-national cooperation takes surface characterization of powders a fibers by Inverse Gas Chromatography (IGC) to new heights

Dr. Ralf Dümpelmann (Inplytix, CH), Dr. Eric Brendle (Adscientis, F), Dr. Jürgen Adolohs (Porotec,

6. IGC-Symposium 20.06.2017, Cologne

www.inverse-chromatography.com

art'otel in Cologne

THANK YOU FOR YOUR ATTENTION!

ERIC BRENDLE

www.adscientis.com

+33 389 48 0042

Linkedin

RALF DÜMPELMANN

www.inolytix.com

eric.brendle@adscientis.com ralf.duempelmann@inolytix.com

+41 79 3129327

Linkedin

