Zeolites Characterization by

Inverse Gas Chromatography: Precise, Easy & Significant

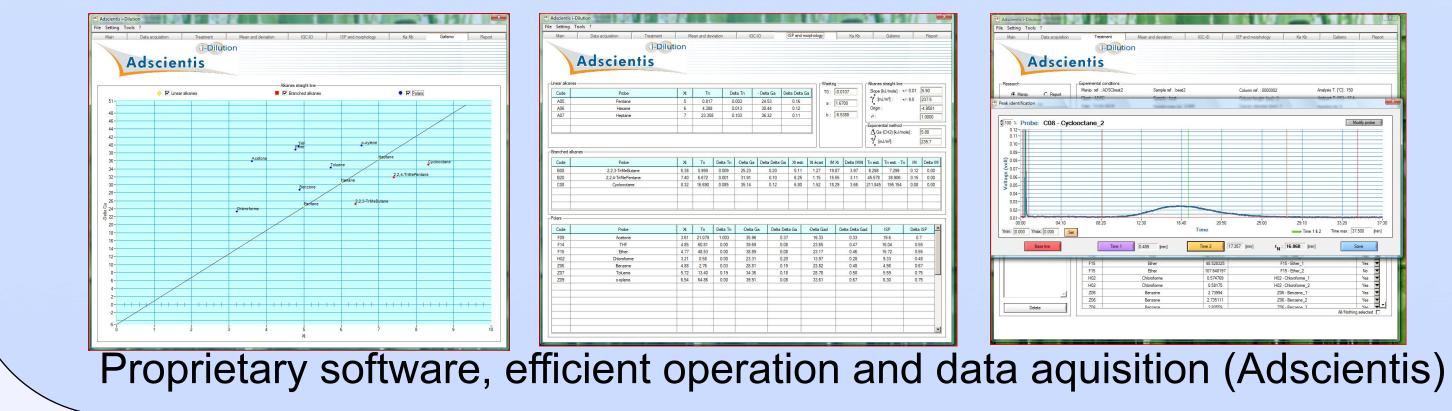
E. Brendlé¹, R. Dümpelmann², M. Rückriem³, J. Adolphs³

¹ Adscientis S.A., Wittelsheim, France ² Inolytix AG, Sisseln, Switzerland ² POROTEC GmbH, Hofheim, Germany

Summary

Adscientis inolytix

Smart Inverse Chromatography

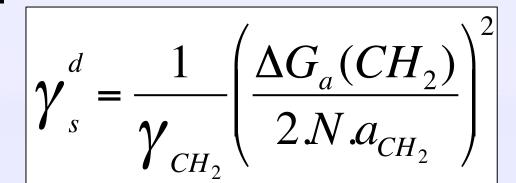

Characterization of solids, e.g. Zeolites, by Inverse Gas Chromatography (IGC) delivers precise and unique values about surface energy, size exclusion and acid/base properties.

Proven software, as our own development, experience and proven operation conditions are requirements, while the use of standard GCs allows great flexibility plus 2 channels.

Principles of Inverse Gas Chromatography (IGC)

- 1. Samples (powder, fibers, flakes) are filled into column 2. Many probes are injected (n-alkanes, branched, polar, ...)
- **3. IGC-ID (infinite dilution)**: very low amount, symetrical peak
 - ✓ Surface energy (γ_s^d), nanoroughness, acid-base, ΔG_a , ΔH_a , ΔS_a
- **4. IGC-FC (finite concentration)**: high amount, asymetric peak
 - ✓ Desorption isotherm, specific surface area, adsorption energy distribution function

The BEA type zeolite has higher surface energy γ_s^d than Silicalite-1, 237 vs. 192 mJ/ m², whereas Silicalite-1 shows a very strong size exclusion effect. BEA is more polar and has stronger electron donor (acid) and acceptor (base) properties.



Standard GC, 2 channels

Zeolites characterization by IGC-ID (infinite dilution)

Dispersive Surface Energy (y d)

The method of determination of the dispersive component of the surface energy (γ_s^d) has been pioneered by DORRIS and GRAY¹. Linear alkanes are injected, here n-pentane, n-hexane, n**heptane.** γ_s^d is independent of specific surface area, volume, flow rate etc., but ONLY if dilution is "infinite". IMPORTANT: γ_s^d is only the dispersive, non-polar surface energy.

- N, Avogadro's number
- γ_{CH2} the surface energy of a solid entirely constituted by CH2 groups (Poly ethylene) $\gamma_{CH2} = 36,5 - 0,056.(T-20)$ [T in °C]

Two Zeolites are compared: BEA and Silicalite-1

BEA: $S_{BET} = 626 \text{ m}^2/\text{g}$, $V_{pores} = 0.23 \text{ cm}^3/\text{g}$, both are powder of microcystals Silicalite: $S_{BET} = 394 \text{ m}^2/\text{g}$, $V_{pores} = 0.18 \text{ cm}^3/\text{g}$ 35 iGC conditions: 10 mg, short column 1.5 mm ID, measurement: 150°C, 20 mL/min, 3x injections

Surface energy	ΔGa(CH ₂) [kJ/mol]	r²	$\gamma_{\rm s}^{\rm d}$ [mJ/m ²]
BEA	5.90 ± 0.01	1.0000	237.5 ± 9.5
Silicalite-1	5.30 ± 0.02	1.0000	192.0 ± 8.4

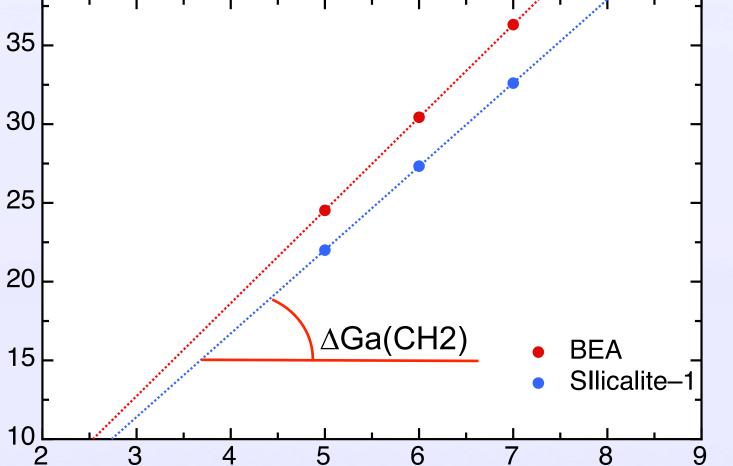
BEA has significantly higher γ_s^d with 237 mJ/m² than Silicalite-1 with 192 mJ/m².

Low error due to long-term experience.

Isooctane and cyclooctane have much shorter

size exclusion effect in a very useful way.

IM isooctane


 0.15 ± 0.01

< 0.01

significant effect for BEA.

Silicalite-1 shows a very strong size exclusion

retention times than n-alkanes. This quantifies a

5

 a_{CH2} , the area of an adsorbed CH₂ group (6 Å²)

Surface Morphology (IM), i.e. nanoroughness, size exclusion

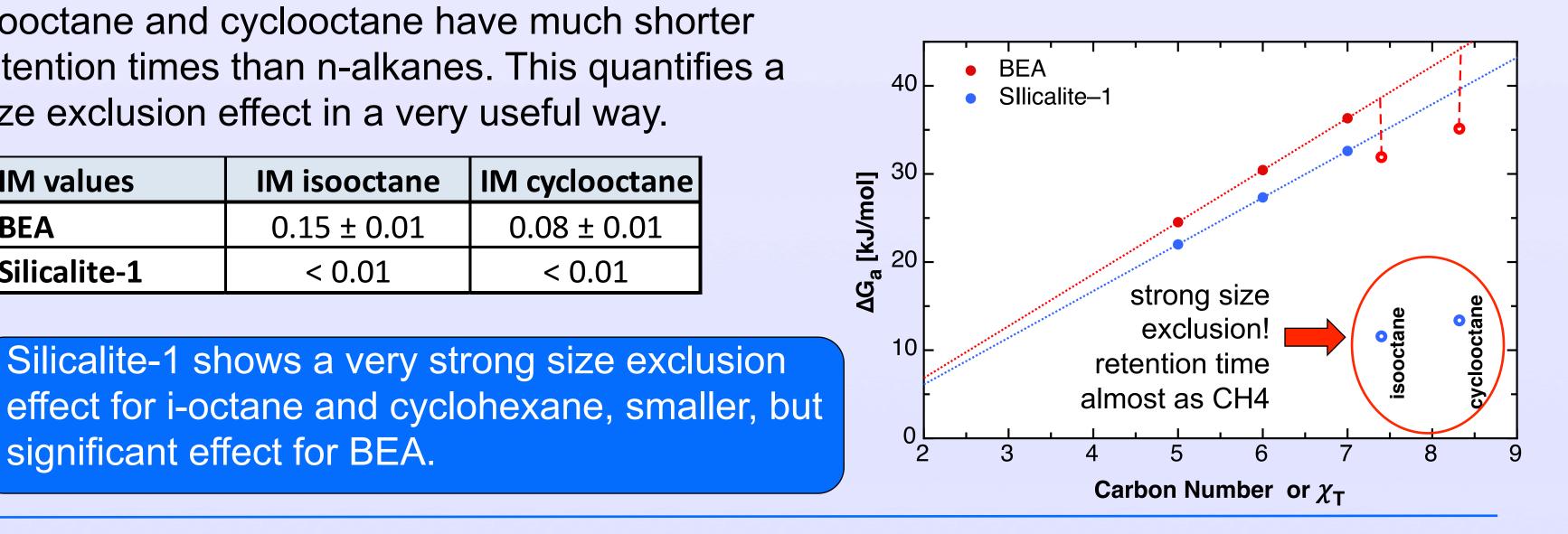
The morphology index (IM) is given by the ratio of the retention volume of a branched alkane molecule $V_G(M)$ and $V_G(C)$ the retention volume of an n-alkane having the same accessibility to the solid's surface. It is based on the topology index concept of molecules (χ_{T}) and considers shape and Van der Waals volume².

This can be expressed as ratio of the retention volumes or derived from the free adsorption energy with similar results.

V_G(M) retention volume of branched alkane

$$M = V_G(M)/V_G(C)$$

 $V_{G}(C)$ retention volume of linear alkane


Specific Interactions (ISP)

The specific interaction parameter (ISP) is determined in relation to the reference n-alkane straight line³. It is expressed as the difference between a polar probe (ΔG_a) and the reference alkane molecule with non-polar, dispersive adsorption $(\Delta G_a^d)^4$.

 $ISP = \Delta G_a^{sp} = \Delta G_a - \Delta G_a^{d}$

By proper choices of injected probes (acid/base characteristics), the solid's surface acid/base properties can also be assessed.

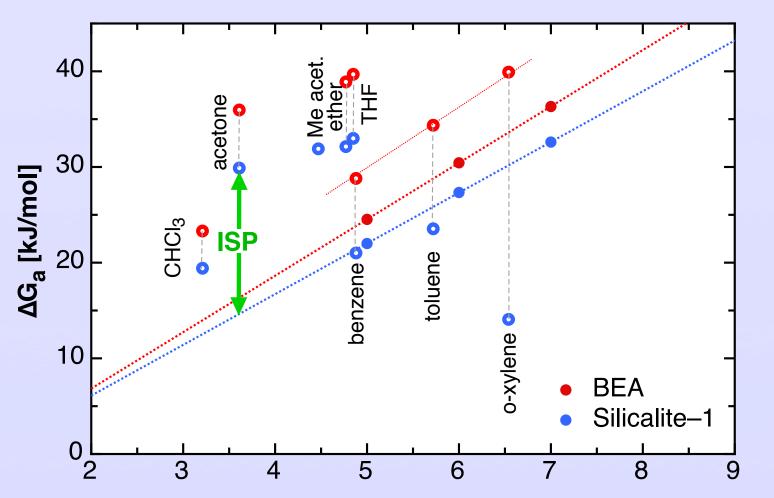
Carbon Number or χ_{T}

Stronger polar interaction by BEA (higher ISP) than Silicalite-1

IM values

Silicalite-1

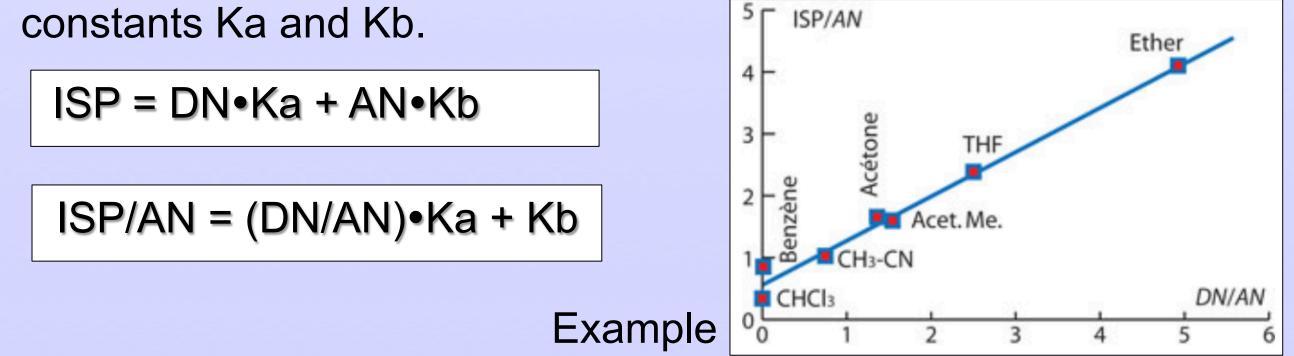
BEA


ISP [kJ/mol]	BEA	Silicalite-1	
Acetone	19.6 ± 0.7	15.2 ± 1.1	
THF	16.0 ± 0.6	11.8 ± 0.7	
Ether	15.7 ± 0.5	11.3 ± 0.6	
Chloroforme	9.3 ± 0.5	6.9 ± 0.7	
Me-Acetate	> 24	12.7 ± 1.0	
Benzene	5.0 ± 0.7	-0.4 ± 1.0	
Toluene	5.6 ± 0.8	-2.3 ± 0.9	
o-xylene	6.3 ± 0.8	-16.1 ± 5.3	

IM cyclooctane

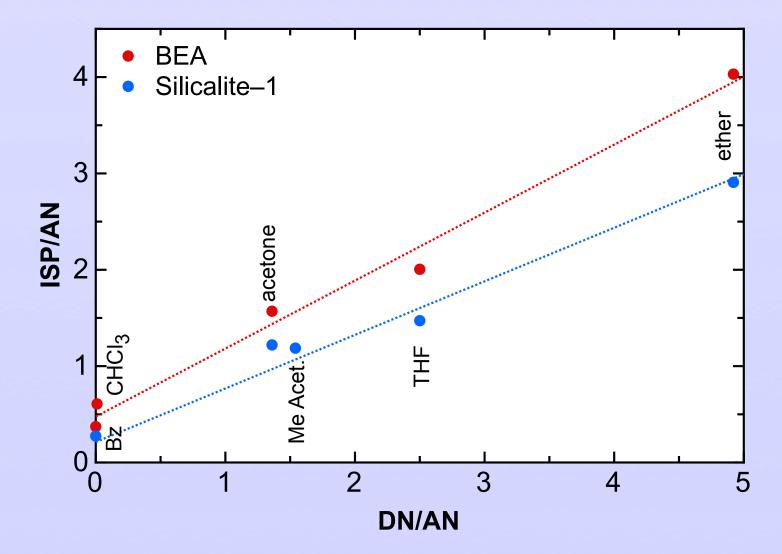
 0.08 ± 0.01

< 0.01


Quantitative and clear differentiation of adsorption behaviour and polar interactions is based on 8 probes.

Carbon Number or χ_{T}

Determination of the acid and base constants (Ka, Kb)


By injecting probes of known electron acceptor (AN) and donor numbers (DN), according to the semi-empirical acid/base scale of GUTMANN⁵, the ISP value can be related to acid and base

BEA zeolite shows stronger interaction potential with higher electron donor (Ka= 70.6) and acceptor (Kb= 47.7) values than Silicalite-1.

Acid-Base constants	Ка	Kb	for better
BEA	70.6		readability: Ka*100, Kb*100
Silicalite-1	55.6		

The two zeolites can be cleary differentiated by their electron donor and acceptor potential based on the retention times of known probes.

References

G.M. DORRIS, D.G. GRAY; J. Colloid Interface Sci. 77 (1980), 353-362 E. BRENDLE, E. PAPIRER ; J. Colloid Interface Sci. 194 (1) 207-216 (1997) E. BRENDLE, E. PAPIRER ; J. Colloid Interface Sci. 194 (1) 217-224 (1997) C. SAINT FLOUR, E. PAPIRER ; J. Colloid Interface Sci. 91 (1) 69-75 (1983). V. GUTMANN, "The Donor-Acceptor Approach to Molecular Interactions", Plenum Press, New York (1978)

Acknowledgement

Jean Daou from the team Materials with Controlled Porosity from the Institute of Material Science of Mulhouse, UMR CNRS 7361, University of Haute Alsace, Mulhouse, France, for providing the zeolites samples. Contact: jean.daou@uha.fr